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Chemical Composition of Atmosphere
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AIR POLLUTION IN NUMBERS

AIR POLLUTION AFFECTS
NEARLY ALL OF US AIR POLLUTION REDUCTIONS

e — People in The Americas are

pollution in 2012. This is 11.6% Of all global deaths.

breathing cleaner air than 5
years ago

. 60%

(o
About 60% of urban residents in
low- and middle-income
countries in the Region of the
Americas are breathing cleaner
air than they did 5 years ago,
about the same progress seen in

high-income countries in the
Region of the Americas.
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Annual average PM, . concentration in cities
estimated from surface monitoring and
GBD2010 model
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PM, . exposure estimates used in GBD2010 analysis
were based on a combination of estimates provided
by global chemical transport model TM5, and
estimates from remote sensing and calibrated to
available surface measurements.

Year 2005 emissions from the GAINS emissions
data base.

Satellite-derived PM, . estimates were based on the
observations of the Aerosol Optical Depth (AOD)
provided by the National Aeronautics and Space

Administration (NASA) from two instruments
(MODIS and MISR).
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S3o Paulo Mexico City
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Year 2005 PM,  surfaces at 0.1°
grid resolution for the
surrounding environs of four
mega-cities (Sao Paulo, Mexico
City, New Delhi and Beijing)
derived from a combination of
satellite remote sensing,
chemical transport modelling,
and ground-based observations

The population-weighted mean
of the PM,, ; surface within the
urbanized land area is displayed
for each city




Bluer Skies in Beijing
Pollution levels in China's capital fell as the government clamped down on coal burning
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Note: Chart illustrates 30-day moving average of air pollution levels
Source: China Air Quality Index




Ground-level Ozone Is a Growing Problem in China

Average concentrations of air pollutants in China as percentages higher or lower than national standards
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2013-2017 summer ozone trends for the four megacity clusters
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Fig. Z Time series of monthly mean MDAS ozone anomalies in summer (JJA) 2013-2017 for the four megacity clusters of Fig. 1: BTH, YRD. PRD, 5CB. MDAB
ozone values for individual 0.5% = 0.625" grid cells are averaged over each duster and month, and anomalies are computed relative to the 2013-2017 means
for that month of the year. In each panel, observations (red line) are compared with results from an MLR model driven by meteorological variability (blue
lime). The linear trend of the 3-mo average residuak for each year is shown in black. The MLR model uses the top three meteorological predictors (Table 1) for
each 0.5" = 0L625" grid cell in the cluster, and the results are then averaged for each cluster. The dominant variables in each cluster are indicated in legend
with the sign of their correlation to MDAR ozone. The coefficients of determination (8”) for the MLR model are shown in the right corner of each plot for the
detrended time series (removing the residual linear trend).
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P. S. Monks et al.: Tropospheric ozone and its precursors
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Figure 1. Schematic representation of the interactions of ozone in
the Earth system (EPA. 2009).

Atmos. Chem. Phys., 15, 8889-8973, 2015
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» Ozone Precursors: nitrogen oxides (NOx), carbon
monoxide (CO), methane (CH4), and
nonmethane hydrocarbons (NMHC)

» Importance of hydroxyl (OH) and peroxy radicals
(HO2 or RO2)

PHOTOCHEMISTRY




Atmospheric Chemistry - Tropospheric ozone

NO, (hv, 2<400 nm) = NO + O
O+0,+M 2 0,
ROO- + NO @ RO- + NO,

NO + 0, @ NO, + O, /



HC and oxigenate species
Role of VOC on ozone formation

COV +OH —%L s RO, + H,O--vveviiieii R1
CO+0OH L2 3 HO, +CO, - oovvevenieii R2
RO, + NO—215COV,__, o + HO, + NO, --evvvnenen R3
HO, + NO = OH + NO, -+ reeemmeermineiiieinn, R4
NO, + ho — NO 4O ceveeniiminiiiii i, R5
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RO, represents any organic molecula

At night or close to strong sources of NO
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RATIO VOC/NOX AND OZONE FORMATION

NO2+hv> NO+0O If no nitrogen oxides are available, the
reaction cycle cannot take place.

B If too much nitrogen oxides are available

O3 + NO - NO2 + O2 the excess of nitrogen oxide NO reacts

not only with the peroxy-radicals but
removes the ozone again.
*If no sunlight is available NO cannot be
recycled again and the formation of
peroxy-radicals is not sufficient.

20H. (the radical hidroxila is the key to

understand the tropospheric chemisiry) /

OH. mmmm— MoreV

More NOx

COV-limitante

OH.
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Figure 3.% Schematic of the photochemical pathways leading to the production of O (red lines) and the termination
steps that dominate under NO -limited (blue line) and VOC-limited (green line) regimes,
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NMHCs average mixing ratios in SGo Paulo compared with those in other megacities.

Paris and London data were obtained in urban background air quality station
(AIRPARIF, 2013) and London Eltham site (DEFRA, 2013), respectively). Los An
were attained from CalNEx study in 2010 (ref) (CalNex, 2010).

Dominutti et al., 2016. Atmos. Environ.
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OZONE PROFILE
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Evaluation of a
superficial ozone
concentration
Increase

For 2000 to 2100

Prather et al., GRL 2003
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» |- All the FLEX Fuel vehicles running with gasohol

» 2- All the Flex Fuel vehicles running with ethanol

IMPACT OF ETHANOL/GASOHOL /
ON OZONE FORMATION

FAPESP, NOV 28th, 2016



Chamber Experiments
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Figure 1. Typical ozone formation curves, obtained from expo-
sures to sunlight of alcohol/NO- and gasohol/NO-mixtures.




OTHER RESULTS:
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and —7 °C over the NEDC (New European
Driving Cycle).

Emissions from a flex-fuel vehicle, fueled
with E85 and E75, lead to SOA formation,
from Oxygenated compounds.

R. Suarez-Bertoa et al. Primary emissions and secondary organic
aerosol formation from the exhaust of a flex-fuel (ethanol) vehicle, In
Atmospheric Environment, Volume 117, 2015, Pages 200-211,

Acetaldehyde, ethylene
and their precursor,
ssenzene  €thanol, were the main
_;'H _ contributors to the OFP,
sethane  @aCCOUNtINg for up to 90%
T of the total at both

& Formaldehyde

m Acetaldehyde temperatu les.

® Ethanol
mCO

As a consequence of
Increased use of ethanol
fuel in Brazil,
acetaldehyde, has
become the fourth lar
0ZOne precursor in
Brazilian are




Formaldehyde and Acetaldehyde
Concentrations in MASP

Tanie 1
O Formaldehyde slope=-0.14 = 0.09, R = 0.4, pvalue=0.11 Environmental concentratdons of formaldehyde and acealdehyde in the MASE ovel
=0 the last 30 years.
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DEATHS LINKED TO OUTDOOR
AND HOUSEHOLD AIR POLLUTION

Concentration of particulate matter with an aerodynamic diameter of 2.5 ym or less (PM2.5)
in nearly 3000 urban areas*, 2008-2015

7 mi I I |on people die prematurely every year
from air pollution - both household and outdoor.
ng these deaths:
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» Organic material contributes 20-50% of the total fine aerosol mass at conti
[Saxena and Hildemann, 1996; Putaud et al., 2004] and as much as 90% j
areas [Andreae and Crutzen, 1997; Talbot et al.,
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Black Carbon
Black carbon climate danger “"underestimated”

Black carbon, is very important in a global scale,

Studies showed that Black Carbon can be the second
major responsible for the global warming, being behind
only for CO..

Ramanathan &Carmichael
Nature Geoscience 1, 221 (2008)

CLIMATECHANGE /

Aerosols heat up NATURE|Vol 448|2 August 2007

Peter Pilewskie //
Solid particles suspended in the atmosphere have long played second fiddle
to greenhouse gases as agents of climate change. A study of atmospheric
heatin%wer the Indian Ocean could provoke a rethlnk
Sao Paulo’Advanced School - Climate Change, july 6, 2017




(a) Thermochemical Molecular
Classification Structures

Graphene Sheets

Optical
Classification

| Optical Absorption

Carbon anotubes

Elemental (graphitic/turbostratic), Black
@ Carbon (EC) Fullerenoids Carbon (BC)
Q
= Polycyclic Aromatics,
2| | Refractory Humic-Like Substances, Colored
& | | Organic Carbon N-Heterocycles, Organic Carbon
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o
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O] (OC) Derivatives (OC)
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Ulrich Pdschl; Manabu Shiraiwa; Chem. Rev. 2015, 115, 4440-4475.




Emission Inventory of Organic Aerosols

Botton-up approach

BSOA (biogenic SOA) 12-70 TgC/year
POA 35 TgC/year (2 anthropogenic)
(25 biomass burning)
ASOA 2- 12 TgC/year
Total 50-90 TgC/year /

i/ a

The formation, properties and impact of secondary organic aerosol: current and emerging
issues

Atmos. Chem. Phys., 9, 5155-5236, 2009 www.atmos-chem-phys.net/9/5155/2009/
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Fig. 2. Distribution of mass (A) and SOA formation potential (in pg SOA-ug~'; B) in diesel and gasoline fuel (representative of exhaust) and nontailpipe gasoline
emissions. Distributions in A and B are colored by chemical class. Fuel properties (density, carbon fraction) and bulk SOA yields (at an organic partide loading of
10 pg-m ) are superposed on A and B, respectively. Predicted SOA from gasoline exhaust is much lower than diesel and dominated solely by aromatic content,
whereas diesel SOA is produced from a mix of aromatic and aliphatic compounds. A distribution of the SOA potential uncertainties is provided in S/ Appendix, Fig. S5.
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Elucidating secondary organic aerosol from diesel and

gasoline vehicles through detailed characterization of

organic carbon emissions

Drew R. Gentner®, Gabriel Isaacman®, David R. Worton®<, Arthur W. H. Chan®, Timothy R. Dallmann®, Laura Davis®,
Shang Liu?, Douglas A. Day®', Lynn M. Russell, Kevin R. Wilson®, Robin Weber®, Abhinav Guha®, Robert A. Harley?,
and Allen H. Goldstein™"?

1831818323 PNAS November 6, 2012 vol. 109 no. 45
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Table 1.

Weight by carbon, wtC%

Distribution of mass and SOA potential by chemical class for diesel exhaust, gasoline exhaust, and nontailpipe gasoline

Potential SOA formation, wt%

Diesel Gasoline Non-tailpipe Diesel Gasoline Mon-tailpipe
Compound class exhaust exhaust gasoline exhaust exhaust gasoline
Total aliphatic 68 + 8 58 + 2 85+ 4 47 + 4 0.38 + 0.07 0.9+ 04
Straight-chain alkanes 741 7.7 + 0.3 20+ 1 11 +2 0.09 + 0.003 0.02 + 0.001
Branched alkanes 23 +2 40 + 1 60 + 3 14 + 2 0.12 + 0.003 0.13 + 0.01
Cycloalkanes (single straight alkyl chain) 25+ 0.2 4.3 + 0.1 1.03 + 0.04 12 +0.3 0.13 + 0.07 0.7+ 04
Cycloalkanes [branched/multiple 18 + 2 6.2 + 0.3 5.0+ 0.2 11 +2 0.04 + 0.02 0.05 + 0.03
alkyl chain(s)]
Bicycloalkanes 13 1 0 0 6+ 1 0 0
Tricycloalkanes 4.8 + 0.6 0 ] 4 +1 0 0
Single-ring aromatics 19 +2 29 +1 2.7+ 0.1 36 +9 96 + 22 99+ 6
Polycyclic aromatic compounds 4+ 2 0.32 + 0.02 0.0003 17 + 8 3.2 +09 0.01 + 0.01
Alkenes (straight, branched, cyclic) 0 3.6 +0.1 7.4+ 03 0 0 0
Ethanol 0 6.9 + 0.5 4.4 + 04 0 0 0
The wt% by total mass for each source can be found in the 5/ Appendix, Table 52.
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Elucidating secondary organic aerosol from diesel and
gasoline vehicles through detailed characterization of
organic carbon emissions

Drew R. Gentner', Gabriel Isaacman, David R. Worton®, Arthur W. H. Chan®, Timothy R. Dallmann’, Laura Davis’,
Shang Liu®, Douglas A. Day™', Lynn M. Russell®, Kevin R. Wilson’, Robin Weber®, Abhinav Guha®, Robert A. Harley’,
and Allen H. Goldstein™*?
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Fig. 3. The percent contribution of gasoline and diesel exhaust to SOA over

0% to 50% diesel fuel use demonstrates the predominance of diesel sources
for SOA formation. SOA contributions form the two sources are equivalent
at 6% diesel fuel use. The United States and California state averages shown
are based on total on- and off-road use. The urban areas in California shown
are for on-road fuel use only; off-road contributions will increase the diesel
fraction of total use by several percent, but are not available at this scale.



PRIMARY BIOLOGICAL AEROSOL PARTICLES (PBAP)

Jaenicke [2005] suggests may be as large a source as dust/sea salt (1000s Tg/yr)

May act as CCN and IN [Diehl et al., 2001; Bauer et al., 2003; Christiner et al., 200






Latin America and the Caribbean Population

* 648,476,231 (in 2017 according to United Nations)

* Latip-America and the Caribbean population is equivalent
) td8.62% of the total world population.

* The population density in Latin America and the
Caribbean is 32 per Km? (83 people per mi?).

* The total land area is 20,158,154 Km? (7,783,104 sq.
miles)

—> m- the population is urban (516,362,188 people in
2(

 The median age in Latin America and the Caribbean is
) @ ears.

Worldometers (http://www.worldometers.info/world-population/latin-america-and-the-
caribbean-population/)
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Metropolitan Area of Sdo Paulo - MASP
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MASP= SGo Paulo city + 38 cities
21 million inhabitants
e /.2 million vehicles

2000 significative industrial plants
* 8000 km?




Characterization of the air Pollution Problem

CO CO, SO, NH,* SO42‘ NOj5
NO NO, NH; VOC pSecondary organic/
Particles inorganic aerosol

New Directions: from biofuels to wood stoves: the modern and ancient air quality
challanges in the megacity of S&o Paulo. Atmos. Environ., 2016




Ethanol represents 55% of the
burned fuel.

*50% of the cars have more than 10
years of use.




Evolution of the average values of CO, PM,,, O;, SO, and NO, concentrations
measured at the CETESB air quality monitoring stations in the MASP
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Sources not properly accounted

* Evaporative emissions during refuelling Evaporative

Refuelling il
* Solvents: painting and industries Emissions Emissions
Hot Soak
* Biomass burning Running Losses
Diurnal

%

* \Vegetation residues
* Wood, charcoal

g7 T

Exhaust
Emissions

(© e O

Vehicular Emissions

| 2.000 Km

Sources: NIPE-Unicamp, IBGE and CTC



Alr
pollution in
Sao Paulo
MegaCity

Who is
more
impacted?

PROGRAMS TO CONTROL BUT STILL HOT SPOTS OF
EMISSIONS REDUCED THE CONCENTRATION AFFECT THE
AVERAGE CONCENTRATION POPULATION

TWO ASPECTS: TIME SPEND TO POPULATION EXPOSURE DUE TO
COMMUTE AND INEQUALITY IN HOT SPOTS OF POLLUTION,
ACCESS TO TRANSPORT INEQUALITY EXPOSURE



The air we breathe is different from place
to place

The air quality Is very variable in the
same city

The concentration of pollutants varies
according to site, hour and season
The climate change will impact the air
guality mainly in the megacities.




Mean annual concentrations of trace elements (in ng/m3) present in the PM, .

(in pug/ms3). The measurements were performed during different experimental

campaigns and at different locations in the MASP.
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Air quality in the megacity of Sao Paulo: evolution over the last 30 years
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‘ Carbonaceous aerosols in MASP ‘

(I EC = ocC |

I Secondary Organic Carbon
I Primary Organic Carbon

OC and EC contribution (%)
OC concentration (ug m~)
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o Fig. 4. Average concentration and percentage of total OC attributable to the estimated
secondary and primary organic carbon at Street Canyon, Downtown, Park and Uni-
versity sites.
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Flgure 4. Carbonace ous species concentrations for 21l campaigns. Pere|ra et al’ ACP, 2017
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