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Dispersion Models 
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Model(s) 

 

Emissions 

Chemistry 

Meteorology 

Predictions of 

concentrations 

and source 

attributions at a 

receptor of 

interest 

Examples 
-SMOKE (Emissions Model) 
-CMAQ (Air Quality Models) 
-WRF – Chem , Chemical Transport Models 



Receptor Models 
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Multivariate 

methods 

 

 

Measured Data at 

and/or near a 

receptor 

 

 

Qualitative 

and/or 

Quantitative 

Source 

Attribution 

 

EPRI 

Models: 
 
CMB, Chemical Mass Balance 
 
PCA, Principal Component Analysis 
 
PMF, Positive Matrix Factorization 



Chemical Mass Balance Model (CMB8.2) 

• A receptor model source apportionment using 
ambient data and source profile data with 
appropriate uncertainty estimates. 

 

 

• Version 8.2 available at EPA Support Center for 
Regulatory Air Models - 
http://www.epa.gov/ttn/scram/receptor_cmb.htm  
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Principles 
• A solution to linear equations that express each receptor 

chemical concentration as a linear sum of products of source 
profile abundances and source contributions.  

• Mass and chemical compositions of source emissions are 
conserved from the time of emission to the time the sample is 
taken.   
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Modeling Procedures 
• Identify the types of contributing sources 

• Select chemical species or other properties to be 
included in the calculation 

• Determine the fraction of each of the chemical species 
which is contained in each source type (source profiles) 

• Estimate the uncertainty in both ambient 
concentrations and source profiles 

• Solve the chemical mass balance equations 
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Chemical Mass Balance 
Equation:  

Input: 

• Ambient Concentrations (Ci) 

uncertainties in ambient concentrations (sCj), 

Source Profiles(Fij), 

uncertainties in source profiles (sFij). 

Output: 

• Source contributions (Sj) 

and uncertainties (sSj). 

Measurements: 

• Size-classified mass, elements, ions, and carbon 

concentrations at ambient and source samples. 

N  to1ifor       S  F     C j
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Mininum Square Solution 

• The general equation has the objective of minimize 
the sum of quadratic deviation: 
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• Minimize ²  is to  determiene  Sk that  
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In Matricial form the equation is : 
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Effective Variance Weighted Linear Least Square 
Method 

• minimizing 2 (difference between measured value, ci, 
and calculated value, FijSj, weighed by analytical 
uncertainty)  

 

 

 

 where the denominator is called effective variance 
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• The solution in matrix form is 

 

 

• Sj is initially set to 0.  An iterative procedure is applied 
until Sj does not change more than 1% from step to 
step (k  k+1) 
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Examples 
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Six 

cathegories of 

sources in 

Europe 
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Belis et al., 2016 



Sources Profiles 
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1.Vehicular Emissions 
2.Soil resuspension 



	

	

TUNNEL JANIO QUADROS 

Sao Paulo School of Aerosols, July 29, 2019 19 



Emissions SPMR (HC, CO, NOx, MP, SOx)  

≈ 805 t/day (88%, traffic) 

Traffic volume, proportion heavy-duty vehicles (p HDVs) & pollutant concentrations 

as function time day (TRA). Emission factors (EFs) NOX vs. p HDVs  

Source: Pérez-Martínez et al. (2013) 20 



Emission factors (g km-1, g/kg of fuel burned) from 2011 in comparison 
with values calculated in 2004 study  
(mean ± standard deviation). 

 

Veh. Local 

measured 

Fuel  

(km kg-1) 
CO 

(g km-1)  

(g kg-1) 

NOx             
(g km-1)  

(g kg-1) 

PM10  

(g km-1)  

(μg kg-1) 

 

CO2 

(g km-1)  

(g kg-1) 

LDV  TJQ (2011) 13.7±18.4 

 

5.8±3.8 

78.9±25.3 

0.3±0.2 

4.2±2.6 

0.178±0.143 

2,441±44 

219±165 

3,001±85 

HDV  TRA (2011)  2.24±2.71 

 

3.5±1.5 

7.8±4.3 

9.2±2.7 

25.5±8.1 

0.290±0.248 

692±663 

1,427±1,178 

3,177±90 

LDV  TJQ 

(2004)[12]  

n.d. 14.6±2.3 

n.d. 

1.6±0.3 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

HDV  TMM1 

(2004) [12]  

n.d. 20.6±4.7 

n.d. 

22.3±9.8 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 
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Notes: 1Tunnel María Maluf, São Paulo (2004). 

Perez et al., 2013 



Road Dust Emission 
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a) b) 

c) d) 

Hetem & Andrade,  2016 



Hetem & Andrade 2016 Sao Paulo School of Aerosols, July 29, 2019 23 
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Examples in São Paulo 
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CMB Receptor Models 

 

CETESB, 2002 
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Source of PM2.5 in  

Cerqueira César 

in1993 

Sources in  Cerqueira 

César in 1996/97. 

(Cetesb, 2002) 31 



II. Multivariate Analysis 

 

 

Principal Component Analysis 

 

 

-Reduce the dimension of the data matrix using the 

relation of covariance among the variables.  
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Principal Component Analysis 

• Introduced by Pearson (1901) and Hotelling 
(1933) to describe the variation of a 
multivariate data set in terms of an 
uncorrelated set of variables.  

• Matrix with n observation in p  correlated   
x1,x2,…xp 

• PCA  seeks one transformation of  xi in p new 
variables yi that are not correlated 
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PCA  objectives 

• Extract the true dimension of the data. 

• That is, the dataset of dimension p can be 
represented by q<p dimensions without losing 
information. 

• Interpretation of the main components (“new” 
variables). 
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Principal Component Analysis 

 x  vector of p original variables xT = (X1, . . . , Xp), with 

Cov(x) = Σ. Consider p  linear combinations  for  X1, . . . , Xp  

Y1 = l1
Tx = l11X1 + l12X2 + . . . + l1pXp  

Y2 = l2
Tx = l21X1 + l22X2 + . . . + l2pXp 

  : 

Yp = lp
Tx = lp1X1 + lp2X2 + . . . + lppXp 

 

So Var(Yi) = li
T Var(x) li = li

T Σ li e Cov(Yi, Yj) = Cov(li
Tx, lj

Tx) = 

li
TΣlj. The Principal Components are the linear combinations  

Y1, . . . , Yp not correlated, with the highest possible variances.  

Data Mining Consultant 

StatSoft South America Consulting Services 35 



Como Obter as Componentes Principais 

 The i-ésima Principal Component is the linear combination 

li
Tx 

That maximize  

Var(li
Tx) 

With the characteristics  

li
Tli = 1   Cov(li

Tx, lj
Tx) = 0, 

To any j < i. These restrictions ensure that the sum of the 

variances of the original variables is equal to the sum of the 

variances of the principal components and that they are 

uncorrelated. 

Data Mining Consultant 

StatSoft South America Consulting Services 
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How to obtain the Principal Components 

 Be Σ the covariance matrix associated with the random 

variable vector x. Be (λ1, α1), . . . , (λp, αp) eigenvalues and 

standard orthogonal eigenvectors associated with Σ, sorted 

so that λ1 ≥ λ2 ≥  . . . ≥ λp ≥ 0. The i-ésima Principal 

componente is  

Yi = αi
Tx = αi1X1 + αi2X2 + . . . + αipXp, 

i = 1, 2, . . ., p. With 

Var(Yi) = αi
T Σ αi = λi , i = 1, 2, . . . , p 

Cov(Yi, Yj) = αi
T Σ αj = 0, i ≠ j 

The Principal 

Components 

are not 

correlated and 

have variance 

equal to the 

eingenvalues of 

Σ. 

The magnitude 

of αij 

measures the 

importance of 

the jth variable 

for the ith 

principal 

component. 
Data Mining Consultant 

StatSoft South America Consulting Services 
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Properties of PC 

- It is important to note how much of the total variability is explained by 

each major component. To find this measure, simply calculate; 

 

 

- Principal Components can also be obtained from standard variables, 

ie from the correlation matrix; 

- The principal components derived from the covariance matrix Σ are 

generally different from the principal components derived from the 

correlation matrix ρ; 

- If the data follow a Multivariate Normal distribution, the eigenvalues 

of Σ are distinct and the principal component analysis is based on the 

Maximum Likelihood Estimator of the covariance matrix. 

p; , ... 2, 1,  i ,
...21


 p

i





 Data Mining Consultant 
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Receptor Models ACP  MP2.5  São Paulo 

1989

28%

40%

19%

13%

Soil

V, Ni

Vehicular

Zn, Cu, Pb
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1986

29%

20%

40%

11%

Soil

V, Ni

Vehicular

Zn, Cu, Pb

1997

25%

18%
52%

5%

Soil

V, Ni

Vehicular

Zn, Cu, Pb

2003

4%

45%

33%

18%

Soil

V, Ni

Vehicular

Zn, Cu, Pb
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Castanho & Artaxo, 2001 
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Castanho & Artaxo, 2001 
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Castanho & Artaxo, 2001 
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Castanho & Artaxo, 2001 
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ACP Mass Balance: inorganic data 

• Vehicular emissions: more than 60% and more than 50% (Andrade et al., 
2012) 

Andrade et al., 2012. Vehicle 
emissions and PM2.5 mass 
concentrations in six Brazilian 
Cities. Air Quality, Atmosphere & 
Health. Volume 5, 1, pp 79-88. 

Vehicular emissions of organic 
particulate matter in Sao Paulo, 
Brazil 
Author(s): B.S. Oyama et al. 
MS No.: acp-2015-774, submitted 

Oyama, et al., (2016) 



 

Example of project 

Receptor Modeling: 
Identification of the vehicular emission 

contribution to PM2.5 mass concentration in six 
Brazilian Cities 

 
 

PROJECT: 

Funded by the Ministry of 

Environment 

Coordination: Medical School USP 

Sao Paulo School of Aerosols, July 29, 2019 52 



Recife 

Belo Horizonte 

Rio de Janeiro 
São Paulo Curitiba 

Porto Alegre 

Região Metropolitana População (milhões) Território (mil km2)

São Paulo 19.9 7.9 

Rio de Janeiro 11.8 5.6 

Belo Horizonte 5.0 0.9 

Porto Alegre 9.8 4.1 

Curitiba 3.2 15.4 

Recife 3.8 2.8 
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33 

13 

13 

12 

28 

N.D. Soil

Industrial light-fleet

heavy fleet

Mean concentrations and standard deviations for PM2.5 and BC (in µg / 
m3) and for other elements in the fine fraction (in ng / m3). The loadings 
were obtained by VARIMAX rotation for Sao Paul based on the Maximum 
Likelihood Estimator of the covariance matrix. 
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#Cases 

Mean Std.Dev. Factor 1 Factor 2 Factor 3 Factor 4 

PM2.5 201 28.1 13.3 0.3813  0.4319 0.5924 

BC 201 10.2 6.4    0.4483 0.6890 

Al 160 55.2 61.5 0.9305    

Si 201 128.3 124.6 0.8728    

P 197 22.4 15.7   0.9185   

S 201 936.7 517.5  0.9464   

Cl 191 90.8 153.0   0.6049 0.4313 

K 201 239.3 210.6    0.4525 

Ca 201 84.9 88.6 0.8835    

Ti 201 9.0 8.8 0.8948    

V 193 1.6 1.2  0.7223   

Cr 188 1.6 1.6   0.8202  

Mn 200 6.1 4.1 0.4363  0.5870 0.4654 

Fe 201 181.0 122.7 0.7088   0.4893 

Ni 139 1.1 0.9   0.8772  

Cu 183 9.6 8.2   0.5056 0.6597 

Zn 199 75.1 65.1    0.6925 

Br 182 4.1 3.6    0.6736 

Pb 162 16.3 13.0    0.8261 

Eingenvalue 4.8 2.9 3.6 4.1 

Explained variance  (%) 26.7 15.9 20.2 22.9 

  Sao Paulo 



  #Cases Mean Std.Dev. Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

PM2.5 150 17.2 11.1  0.8778    

BC 150 3.3 2.2  0.7073   0.4984 

Al 125 49.8 58.8 0.8807     

Si 149 121.0 128.5 0.7847     

S 150 658.1 449.3  0.7146 0.4726   

Cl 137 51.9 81.2  0.5925   0.5293 

K 149 177.7 166.5  0.7988    

Ca 148 41.4 35.8 0.8513     

Ti 150 5.6 4.8 0.9069     

V 149 4.3 2.6   0.8750   

Cr 147 1.8 0.7    0.8636  

Mn 148 4.2 2.5    0.6416  

Fe 150 75.3 55.2 0.7552 0.4090    

Ni 140 2.8 1.6   0.7801   

Cu 146 8.2 5.7     0.7752 

Zn 149 24.7 21.5     0.6938 

Br 150 6.4 4.2  0.6386   0.4525 

Pb 149 12.2 10.1     0.8069 

Eigenvalue 8.8 1.9 1.8 1.3 0.91 

Explained Variance (%) 8.8 10.8 9.9 7.5 5.1 

 

17 

14 

40 

13 

5 

11 

N.D. Soil
Diesel Industry
Metals Light

Rio de Janeiro 

Mean concentrations and standard deviations for PM2.5 and BC (in µg / 
m3) and for other elements in the fine fraction (in ng / m3). The loadings 
were obtained by VARIMAX rotation Rio de Janeiro based on the Maximum 
Likelihood Estimator of the covariance matrix. 
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Receptor Modeling for São Paulo 
 
- Results for 2012-2013-2014 from PMF 
- Results from 1986 to 2008 with APCA 
- The participation in the PM2.5 has, in average increased for mobile source 
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%
 

Source Profile - Metropolitan Area of São Paulo 

Soil + construction Vehicular Emission Fuel Oil



Which elements can be 
sources markers? 

The sources tracers have been 
changing with time: a Strong 
correlation between S and P 
indicates the presence of mobile 
sources, mainly diesel.  

We found the same profile at bus 
terminals and trucks garage. 
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classical 
indicators of fuel 
burning are not 
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correlation any 
more. 
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PMF 
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Source Profile 

X = GF+E 

X (nxm) 

G(nxp) 

F(pxm) 



PMF 

  E  =  X – Y   =  X – GF 

 

  eij  =  xij - yij  =  xij -   ;              i = 1,…..,n  (iesima sample) 

             j = 1,…..,m (jesimo element) 

           k = 1,…..,p (kesima source ) 

 

 

    Q(E)  =            ; gik > 0 e fkj > 0 

               sij = uncertainty de xij. 

g fik

k=1

p

kj

(e sij ij

j=1

m
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n

/ )2
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PMF5.0 manual 
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PMF5.0 manual 
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PMF5.0 manual 
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PMF5.0 manual 
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72 
Pereira et al., 2017 
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Pereira et al., 2017 
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Pereira et al., 2017 



Example 

75 

Dissertação 

Yann Marien, 

2017 
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Istambul, port region. 
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Conclusions 

• The analysis of trace-concentration variations with 
time can indicate the importance of specific 
sources 

• The elemental composition of particulate matter 
can represent the variation in the role to specific 
source to atmospheric concentration 

• The combination of different receptor models 
(Principal Component Analysis and Positive Matrix 
Factorization) is recommended to indirectly include 
the correlation analysis in the identification of 
sources through the tracers of the sources. 
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