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Partlcle Dlameter

The particle size is defined either by the diameter, D,
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The diameter is typically given in um [10® m] or nm [10° m]
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The diameter is normally defined as equivalent diameter (non-spherical particles are described
as spheres).
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= Stokes (mobility) diameter, D,

L] Optical diameter, Dp,opt

=  Aerodynamic diameter, DP,Ae




Stokes Diameter (Mobility Diameter)
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The Stokes diameter is defined for a uniform particle motion, where the external force equals the drag force.
The motion is independent of the particle density.
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For a spherical particle, the Stokes diameter D, ¢ can be determined then by the drag force and the
particle velocity.
In case of a spherical particle, the Stokes diameter is equal the geometric diameter and the volume

equivalent diameter D, .. -
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For an irregular particle, the Stokes diameter, if D,,,

The volume equivalent diameter Dy, . <Dy, .

shape factor.
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For a certain sedimentation velocity, the aerodynamic particle diameter can be calculated by using

Aerodynamic Diameter
sedimentation velocity.
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Us, the aerodynamic diameters are
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If the particle density is p, # 1 and the sedimentation velocities are U,

dentical Dis se

DP 1,Ae

The Stokes diameter can be calculated from the aerodynamic diameter, if the particle density is known.
For a spherical particle with the density p, >1, the Stokes (volume equivalent) diameter is smaller than the

aerodynamic particle diameter and can be calculated to
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ticle scatter

in par
DPl,Latex

ta

An illuminated spherical particle with a known Stokes diameter (latex particle)and a known refractive index
gives a cer

The optical diameter of this particle is then calibrated to
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DPI,Opt C

iameter D, ,, =

Oy has the same optical diameter Dy,

o, has the same optical d
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Vaccuum Aerodynamic Diameter
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ic Diameter

In the free-molecular regime (vacuum), the aerodynamic diameter is called the vacuum aerodynamic diameter

pP'DI% 'Cc'g _ IOO.DI%,VAe.CC'g
187 187

The Cunningham Slip Correction factor for the free molecular regime can be simplified to:
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187-4 18- 4

The volume equivalent diameter can then be determined by:
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Particle Number Size Distribution
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Particle Number Size Distributions
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= |t would probably be the best to display an aerosol size distribution as a list of
concentrations of more than 1000 particle sizes classes.

e

= However, aerosol instruments normally provide only a limited number of size intervals and
concentrations.

Example

An instrument with 10 size classes provides 21 values (upper and lower diameters, and
concentrations for each size class).
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Number concentrati

total number concentration N is the sum of the concentrations N, of all intervals.

- Histogram
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Number concentration N, in each size class normalized by the logarithmic width of the size interval

N.is here normalized by the logarithmic width of the size interval.

dN/dlogDp
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Lognormal Size Distribution

S S AT
R
X S M_M..ﬂ}—_r_ _.ﬂn. i ..«_..,._ J._.




Log-Normal-Distribution

= The height of humans is normally distributed. Only few people exceed the height of 2.30 m.

= The annually income of people is log-normally distributed. There are people earning more

than 1000-times more than normal workers.

Aerosol particle size distributions

An aerosol particle size distribution can be often described as a log-normal distribution.

Log-normal-distributions are used to plot particle size distributions, e.g. in the size range from
1-1000 nm.

Normal- und log-normal-distributions are probability functions.
The area under a (log)-normal distribution function is unity.

The log-normal must be multiplied with the total number concentration to describe the
particle number distribution.
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The log-normal-distribut

deviation.
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Particle number size distribution
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Recommendations
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If the size range (x-axis) covers 1 order of magnitude, use a linear scale.
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If the size range covers 2 or more orders of magnitude, use the logarithmic scale.
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To display a concentration (y-axis), wuse always the normalized style
(e.g. AN/AD,).

If the concentration range of interest covers 1 order of magnitude, use a linear scale.

If the concentration range of interest covers 2 or more orders of magnitude, use the
logarithmic scale.
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= Mean particle number size distribution measured in Leipzig, Germany, for winter and summer

= Double logarithmic axes

100000 -

Leipzig summer
Leipzig winter
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Arctic

= Particle number size distribution with three log-normal modes measured in the Arctic

= x-axis logarithmic, y-axis linear
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North China Plain

= Contour plot of the diurnal development of the particle number size distribution
after a new particle formation event
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Shen X.J. et aI (2011) ACP 11, 1565-1580
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