Atmospheric Aerosol Physics, Physical Measurements, and Sampling

Sampling, Drying, Losses & Impactor

São Paulo School of Advanced Science on Atmospheric Aerosols: properties, measurements, modeling, and effects on climate and health

Aerosol Sampling

Flow-Reynolds-Number

The Flow-Reynolds-Number depends mainly on the flow rate and the tube diameter

$$Re_{\text{flow}} = \frac{\rho_{\text{gas}} \cdot \overline{u}_{\text{flow}} \cdot D_{\text{pipe}}}{\eta}$$

 $ho_{\it gas}$... gas density

u_{flow} ... flow velocity

D_{nine} ... tube diameter

η ... dynamic viscosity

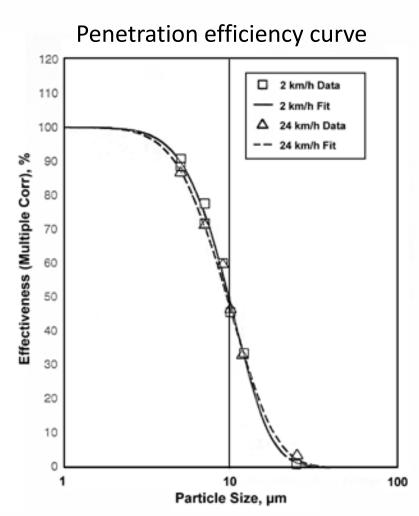
Example

Particle diameter	Relaxation time	Stopping distance	Stokes number
nm	S	m	
10	6,95E-09	9,23E-09	2,31E-06
100	8,90E-08	1,18E-07	2,95E-05
1000	3,56E-06	4,72E-06	1,18E-03
10000	3,09E-04	4,11E-04	1,03E-01
100000	3,05E-02	4,04E-02	1,01E+01
Density: ρ _P	2000 kg/m ³		
Tube diameter: D _t	0.004 m		
Tube velocity: ut	1.33 m/s		
	(5 l/min in ¼" tube)		

Particle Pre-Separators

Devices based on inertia are usually used as pre-separators.

- Impactors
- Cyclones


Pre-separators are used to remove particles larger (or smaller) than a certain size from the aerosol.

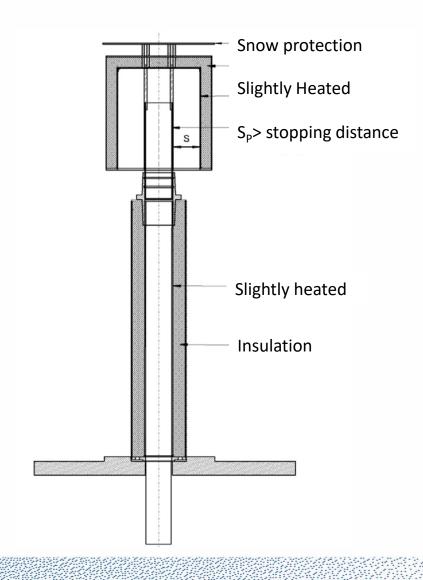
Impactors can be theoretically better described than all other types of pre-separators.

Cyclones and other pre-separators must be calibrated to know their behavior.

Low flow PM10 inlet:

Sampling under Extreme Conditions

Special sampling requirements are needed for sites:


- in tropical and sub-tropical environments
 - → high dew point temperature
- in cold environments (Arctic and Antarctica)
 - → freezing inlets
- on mountains, which are frequently in cloud
 - → whole air vs interstitial inlet

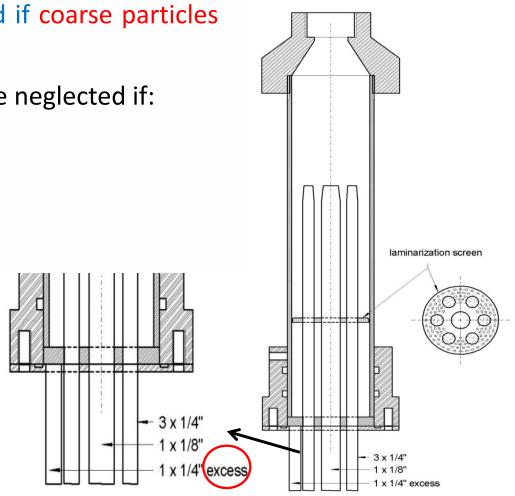
Sampling under Extreme Conditions

- Heated whole air inlet for sites which are frequently in cloud or fog or/and freezing conditions.
- Cloud droplets are drawn into the inlet and evaporated.
- Cloud droplets and interstitial aerosol particles are sampled \rightarrow whole air inlet

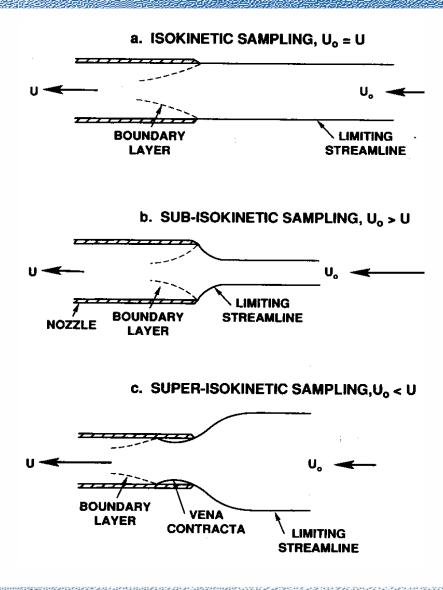
$$\left[\tau_{P} = m_{P} \cdot B = \frac{\rho_{P} \cdot D_{P}^{2} \cdot C_{C}}{18\eta}\right] \left[S_{P} = u_{G} \cdot \tau_{P}\right]$$

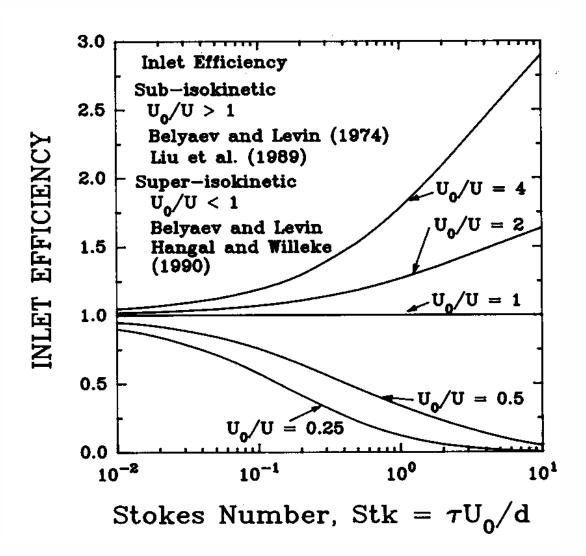
$$s_{\mathrm{P}} = u_{\mathrm{G}} \cdot \tau_{\mathrm{P}}$$

Isokinetic Sampling


An isokinetic aerosol splitter should be used if coarse particles are sampled or characterized.

The particle over- und under sampling can be neglected if:


 $Stk \le 0.01$


$$\left| 0.2 \le \overline{u} / u_0 \le 5 \right|$$

$$\text{Stk} = \frac{\tau_P \cdot u_P}{D_{\text{pipe}}}$$

Isoaxial Sampling ($\Theta = 0$)

Aerosol Drying

Why Aerosol Drying

- With increasing relative humidity, aerosol particles take up water a function of size and solubility.
- This effect can be significant for measurements of particle number size distributions or light scattering coefficients.
- The RH should be <40% to be able to compare e.g. physical and optical aerosol measurements (particle growth <5% in diameter).

GAW Report No. 227:WMO/GAW Aerosol Measurement Procedures, Guidelines and Recommendations, 2nd Edition2016

- No dryer is needed, if T_{room} will be higher than 22°C (72°F) and the T_{dew} never exceeds 10°C (50°F).
- A aerosol dryer is needed for each instrument, if the T_{dew} will be higher than 10°C (50°F) and always below the T_{room}.
- The whole inlet flow has to be dried before entering the room, if the T_{dew} will be occasionally above the T_{room} .

Aerosol Drying Methods

Aerosol diffusion dryer

A diffusion dryer works on the base of silica.

- Advantage: no dry air is needed
- Disadvantage: has to be changed frequently

Membrane dryer

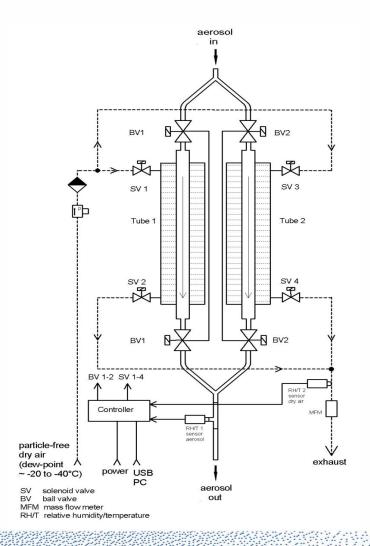
A membrane dryer (e.g. Nafion) is based on the principal that water vapor is transported through a membrane surrounded by a counter flow with low humidity.

- Advantage: no frequent changes are needed
- Disadvantage: a dry air supply (or vacuum) is needed

Dilution

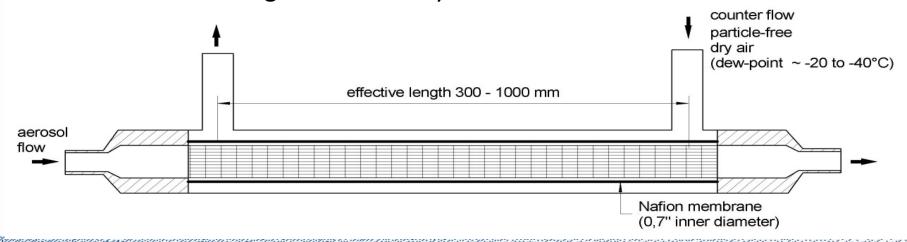
The aerosol is diluted with dry particle-free air.

- Advantage: easy way to dry
- Disadvantage: The dilution ratio has to be exactly known. High ratios may create high uncertainties.
- Dilution is the recommended method for tropical and subtropical observatories


Heating

Heating is NOT recommended to avoid evaporation of semi-volatile particle material.

Automated Aerosol Diffusion Dryer


- Automatic aerosol diffusion dryer based on silica.
- Advantage: silica has to not be changed
- Disadvantage: dry air is needed

Tuch, T. M. et al. (2009). Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites. AMT **2**, 417-422.

Aerosol Membrane Dryer

- A membrane dryer (e.g. Nafion) is based on the principal that water vapor is transported through a membrane, which is surrounded by a counter flow with low relative humidity.
- Advantage: no frequent changes are needed
- Disadvantage: a dry air supply is needed (or high vacuum)
- Below: a custom-designed Nafion dryer

Aerosol Particle Losses

Aerosol Particle Losses

Particle losses in pipes and instruments can occur due to:

- Sedimentation in horizontal or sloping pipes (coarse particles)
- Inertia in bends (coarse particles)
- Diffusion to the wall (ultrafine particles)
- Electrostatic forces (charged particles, mainly ultrafine)

Losses: Ultrafine Particles < 100 nm

- Pipes should be kept as short as possible.
- Only conductive tubing (e.g. stainless steel) should be used.
- The pipe should be designed for a laminar flow
 - Constant aerosol flow: Change in tube diameter → no change in diffusional losses
 - Constant tube diameter: Adjust aerosol flow to Re=2000, if possible
- Turbulent flows should be avoided, because of higher diffusional particle losses.

Losses: Coarse Particles > 1 μm

- Pipes should be vertically orientated.
- In cases when horizontal or sloping pipes cannot be avoided, the air flow should be high.
- Bends should be avoided.
- Highly turbulent flows cause increased inertial losses.
- An isokinetic sampling should be considered.

Losses due to impaction in bends

<u>Laminar flow (Re_{flow} < 2000)</u>

The particle size-dependent penetration through a bend depends on the Stokes Number and curvature of the bend. The penetration can be described by

$$P = 1 - Stk \cdot \frac{\theta^{\circ}}{180^{\circ}} \pi$$
 θ in θ ...angle of the curvature

<u>Turbulent flow (Reflow > 4000)</u>

The size-dependent particle penetration can be described by following approximation:

$$P = \exp\left(-2.823 \cdot Stk \frac{\theta^{\circ}}{180^{\circ}} \pi\right)$$

Losses due to sedimentation in horizontal or sloping pipes

The particle size-dependent penetrations for laminar and turbulent flows can be described by approximation formulas.

<u>Laminar flow (Re_{flow} < 2000):</u>

with

$$P = 1 - \frac{2}{\pi} \left[2\kappa \sqrt{1 - \kappa^{2/3}} - \kappa^{1/3} \sqrt{1 - \kappa^{2/3}} + \arcsin(\kappa^{1/3}) \right]$$

$$\kappa = \varepsilon \cdot \sin(\theta)$$

$$\varepsilon = \frac{3}{4}Z$$

$$\begin{split} \kappa &= \varepsilon \cdot \sin(\theta) \\ \varepsilon &= \frac{3}{4} Z \\ Z &= \frac{L_{\text{pipe}}}{D_{\text{pipe}}} \cdot \frac{u_S}{\overline{u}} \end{split} \qquad \begin{array}{ll} \text{L}_{\text{pipe}} & \text{... length of the pipe} \\ D_{\text{pipe}} & \text{... inner diameter of the pipe} \\ u_s & \text{... sedimentation velocity} \\ u & \text{... mean flow velocity} \\ \vdots & \vdots & \vdots & \vdots \\ u & \text{... angle of the pipe agains} \end{split}$$

... inner diameter of the pipe

... angle of the pipe against the horizontal plain

<u>Turbulent flow (Re_{flow} > 4000):</u>

$$P = \exp\left(-4Z \cdot \cos\left(\frac{\theta^{\circ}}{180^{\circ}}\pi\right)\right)$$

Losses du to diffusion in cylindrical pipes

Approximation formulas are used to describe the losses due to diffusion in pipes.

<u>Laminar flow (Re_{flow} < 2000):</u>

The particle size-dependent penetration can be calculated to:

for μ < 0,007

$$P = 1 - 5.5\mu^{2/3} + 3.77\mu$$

for $\mu > 0,007$

$$P = 0.819 \cdot \exp(-11.5\mu) + 0.0975 \cdot \exp(-70.1\mu) + 0.0325 \cdot \exp(-179\mu)$$

with:

$$\mu = \frac{D \cdot L_{\text{pipe}}}{Q}$$

D ... Diffusion coefficient

L_{pipe} ... length of the pipe

Q ... volume flow rate

Turbulent flow (Re_{flow} > 4000)

The boundary layer δ of the flow close to the wall can be determined.

$$\delta = \frac{28.5 D_{\text{pipe}} \cdot D^{1/4}}{\text{Re}_{\text{flow}}^{7/8} (\eta_{\text{G}} / \rho_{\text{G}})^{1/4}}$$

D ... Diffusion coefficient

 D_{pipe} ... inner diameter of the pipe

 η_G ... gas viscosity

 ρ_G ... gas density

Re_{flow}... Reynolds number flow

The particle size-dependent deposition velocity u_{dep} to the wall is then given to:

$$u_{\rm dep} = \frac{D}{\delta}$$

The particle size-dependent penetration can be calculated to:

$$P = \exp\left(\frac{-4 \cdot u_{\text{dep}} \cdot L_{\text{pipe}}}{D_{\text{pipe}} \cdot \overline{u}_{\text{flow}}}\right)$$

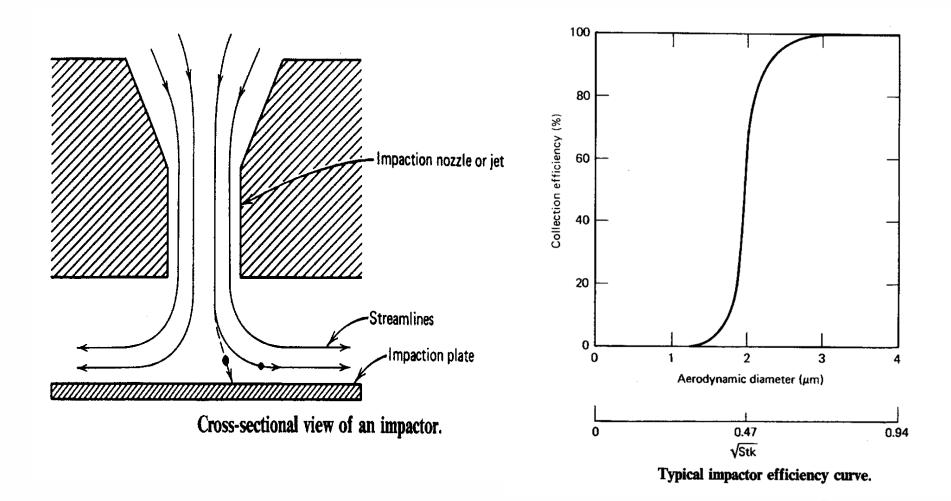
u_{flow} ... mean flow velocity

 L_{pipe} ... length of the pipe

General Recommendations

General Sampling Consideration

These Recommendations are based on the WMO-GAW & ACTRIS:


- Sample air should be brought into the laboratory through a vertical stack.
- The aerosol inlet should be well above ground level (5-10 m) for regional sampling sites in level terrain.
- The aerosol inlet must provide a high inlet sampling efficiency for the required particle size range.
- PM₁₀ inlets should be used, while TSP inlets are NOT recommended anymore.
- The recommendation is to measure at a relative humidity below 40%.

GAW Report No. 227:WMO/GAW Aerosol Measurement Procedures, Guidelines and Recommendations, 2nd Edition2016

Impactor

Operation Principle

- Impactors utilize the mechanism of inertial impaction to deposit particles onto impaction surfaces.
- Impactors are designed as a nozzle impaction plate configuration.
- The aerosol flow through the nozzle is accelerated.
- The impaction plate causes a strong bending of the gas stream lines.
- Small particles can follow the gas stream lines and are not deposited due to their small inertia and short relaxation time.
- Larger particles may not follow the stream lines and are deposited on the impaction plate due to their higher inertia.
- A single stage impactor separates aerosol particles into two size fractions (aerodynamic particle diameter)

Hinds: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles

Mathematical Description

The important parameter for the description of impactors is the Stokes-Number:

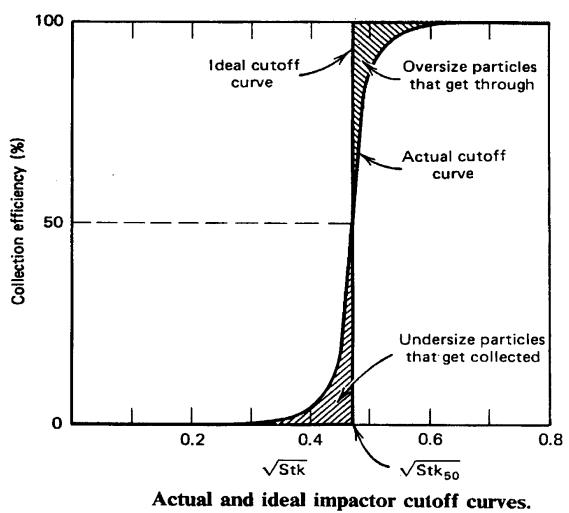
$$\left| \text{Stk}_{p} = \frac{\tau_{p} u}{D_{j}} = \frac{\rho_{p} \cdot D_{p}^{2} \cdot u \cdot C_{C}}{9 \cdot \eta \cdot D_{j}} \right|$$

 τ_{P} ... particle relaxation time

u ... gas velocity

D_j ... nozzle diameter

The Stokes-Number is defined as the ratio of particle stopping distance to the nozzle diameter.

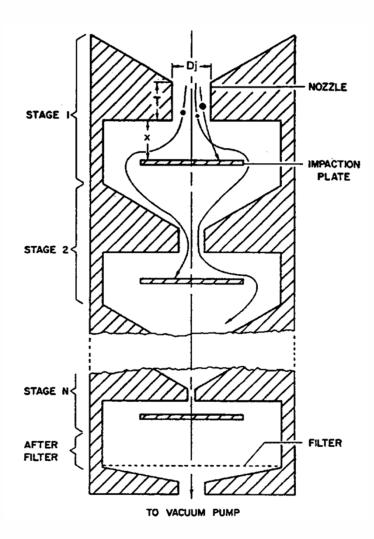

In first approximation, the "cut-off," diameter d_{50} of an impactor can be determined by:

$$D_{P50}\sqrt{C_{\rm C}} = \left(\frac{9 \cdot \eta \cdot D_{\rm j}}{\rho_{\rm P} \cdot u}\right)^{1/2} \cdot \sqrt{\rm Stk}_{50}$$

with 500 < Re < 3000 and $x/D_j > 1.5$ (x = distance nozzle to plate)

Impactor type	Stk ₅₀	$\sqrt{\mathrm{Stk}}_{50}$
rectangular nozzle	0,59	0,77
round nozzle	0,24	0,49

- The idealized transfer function of an impactor, i.e. the deposition efficiency as function of particle size, can be described by means of a step-function at particle size D_{P50} .
- Real impactors exhibit a deposition characteristic, i.e. their transfer function deviates from the idealized transfer function.
- Impactor transfer functions are often plotted as function of $\sqrt{Stk_{50}}$
- A theoretical calculation of real impactor transfer functions, i.e. deposition efficiencies, is possible using numerical methods.


•

Hinds: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles

Particle Mass Size Distributions

- Multiple impactor stages are operated in series to determine of the particle mass size distribution.
- This instrument is called a cascade or multi-stage impactor .
- In a cascade impactor, the cut-off-diameter is decreased from stage to stage.
- This is achieved by decreasing the nozzle diameters and/or the number of nozzles.
- For complete deposition of the small particles, a backup filter is utilized down-stream of the last impactor stage.
- Each stage is equipped with an exchangeable impaction plate.
- The particle mass deposited in each stage is determined gravimetrically or chemically.
- In case of an ELPI, the mass concentration at each stage can be converted to a number concentration, leading to a particle number size distribution.

Cascade impactor

Hinds: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles