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Abstract. Through long-range transport of dust, the North-
African desert supplies essential minerals to the Amazon
rain forest. Since North African dust reaches South Amer-
ica mostly during the Northern Hemisphere winter, the dust
sources active during winter are the main contributors to the
forest. Given that the Bodélé depression area in southwestern
Chad is the main winter dust source, a close link is expected
between the Bod́elé emission patterns and volumes and the
mineral supply flux to the Amazon.

Until now, the particular link between the Bodélé and
the Amazon forest was based on sparse satellite measure-
ments and modeling studies. In this study, we combine a
detailed analysis of space-borne and ground data with reanal-
ysis model data and surface measurements taken in the cen-
tral Amazon during the Amazonian Aerosol Characterization
Experiment (AMAZE-08) in order to explore the validity and
the nature of the proposed link between the Bodélé depres-
sion and the Amazon forest.

This case study follows the dust events of 11–16 and 18–
27 February 2008, from the emission in the Bodélé over West
Africa (most likely with contribution from other dust sources
in the region) the crossing of the Atlantic Ocean, to the ob-
served effects above the Amazon canopy about 10 days after
the emission. The dust was lifted by surface winds stronger
than 14 m s−1, usually starting early in the morning. The
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lofted dust, mixed with biomass burning aerosols over Nige-
ria, was transported over the Atlantic Ocean, and arrived over
the South American continent. The top of the aerosol layer
reached above 3 km, and the bottom merged with the bound-
ary layer. The arrival of the dusty air parcel over the Amazon
forest increased the average concentration of aerosol crustal
elements by an order of magnitude.

1 Introduction

Mineral dust has been suggested to play an important role
in biogeochemical cycles (Falkowski et al., 1998; Garrison
et al., 2003; Jickells et al., 2005, Mahowald et al., 2009),
climatic processes (Twomey, 1974; Levin et al., 1996; Al-
brecht, 1989; Falkowski et al., 1998; Ramanathan et al.,
2001; Rosenfeld et al., 2001; Koren et al., 2005; Kaufman
et al., 2005c; Teller and Levin 2006; Jiang et al., 2006; Stith
et al., 2009), and human life (Prospero, 1999; Griffin and
Kellogg, 2004).

Despite major efforts, the spatial and temporal distribu-
tions of mineral dust remain uncertain. Therefore, the nature
and magnitude of dust feedbacks on climatic processes, bio-
geochemical cycles, and human life are not well constrained.
Important unanswered questions include: what are the exact
North African dust sources of crustal elements observed in
the Amazon Basin and what are their associated fluxes?

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


7534 Y. Ben-Ami et al.: Transport of North African Dust

The Amazon rain forest has important roles in Earth’s
climate system. It acts as a source of primary and sec-
ondary biogenic aerosol particles and components (Artaxo
and Hansson, 1994; Quéŕe et al., 2009; Martin et al., 2010).
It also affects the global biogeochemical cycles, including
carbon cycling (Davidson and Artaxo, 2004). To sustain the
well-being of the forest and the fragile balance between the
rain forest and the atmosphere, the Amazon forest must re-
ceive a sufficient amount of nutrients. However, the intense
precipitation and ensuing floods wash most of the soluble
minerals from the rainforest soil, leaving behind a quite in-
fertile soil, with limited nutrients available for plants growth
(Vitousek and Sanford, 1986). In-situ measurements (Talbot
et al., 1990) and image analysis studies (Swap et al., 1992)
have suggested that the deficiency of nutrients in the Amazon
soil can be replenished by deposition of mineral dust, mostly
from the Sahara.

Mineral dust aerosol were previously observed in the
Amazon region, and its appearance was attributed to arrival
of air parcels from North Africa (e.g.: Prospero et al., 1981;
Artaxo et al., 1990; Swap et al., 1992; Formenti et al., 2001).
Nevertheless, not all dust outbreaks reach the Amazon for-
est. Transport of the North African dust across the Atlantic
Ocean was studied since the early seventies. The active dust
sources, the trajectories across the Atlantic Ocean, as well as
the sink of North African dust, are subjected to the seasonal
cycle due to the shift in the location of the inter tropical con-
vergence zone. During the late boreal winter and the spring,
North African dust, mixed with biomass-burning aerosols
from the Sahel region (Formenti et al., 2008; Ansmann et
al., 2009), follows southern trajectories heading to the north-
ern part of South America (Kaufmann et al., 2005a; Huang
et al., 2010). The transport of dust over the Atlantic Ocean
(about 7 days) was intensively studied by ground based (e.g.:
Prospero et al., 1981, 1999) and airborne measurements (e.g.:
Prospero and Carlson, 1972; Carlson and Prospero, 1972;
Reid et al., 2002), satellite remote sensing (Karyampudi et
al., 1999; Torres et al., 2002; Kaufman et al., 2005a; Liu
et al., 2008a and b; Generoso et al., 2008; Ansmann et al.,
2009; Ben-Ami et al., 2009; Huang et al., 2010) and trans-
port models (e.g.: Ginoux et al., 2004; Schepanski et al.,
2009; Engelstaedter et al., 2009).

The arrival of the dust to the Amazon forest is manifested
by an increase of crustal elements such as Al, Si, Fe, Ti, and
Mn, generally from the submicron fraction (e.g.: Prospero et
al., 1981; Artaxo et al., 1990; Swap et al., 1992; Formenti et
al., 2001; Martin et al., 2010). The peak of crustal elements
range from one to several days, and is typical to the months
of March and April, which is the wet season in the central
part of the Amazon Basin. Kaufmann et al. (2005a) esti-
mated that 50±15 Tg y−1 of dust reaches the Amazon Basin.
Transport of biomass smoke from Africa occurs also during
the dry season (Martin et al., 2010). The above elements
serve as markers for the arrival of mineral dust and they are
not necessarily essential for plants growth. The bioavailabil-

ity of elements contained in mineral dust to plants is beyond
the scope of the paper.

Although the transport route of Saharan dust was exten-
sively studied, the exact origin of the dust, as well as the mag-
nitude and the frequency of transport are not well known. An
important reason for these uncertainties is that previous stud-
ies focused either on the region of the Amazon forest and the
transport route over the Atlantic Ocean, or over North Africa
, and so the direct link, between the source and the sink loca-
tions was not studied in sufficient detail.

Koren et al. (2006) suggested that the Bodélé depression
(centered in Chad, 17◦ N 18◦ E), is the main source for the
dust transported to the Amazon Basin. Using a year-long
satellite data set, they studied the emission patterns of the
Bodélé, and suggested a dust transport route towards the
Amazon. However, their study did not include ground-based
measurements, and their conclusions were based on induc-
tive reasoning, showing that the North African dust arrives in
the Amazon mostly during the (Northern Hemisphere) win-
tertime and that the Bodélé is the main winter source. There-
fore, they concluded that the Bodélé contributes a significant
amount of nutrients to the Amazon Basin.

Other regional (Schepanski et al., 2007; Ginoux et al.,
2009) and global (e.g.: Prospero et al., 2002) remote sensing
studies also identified the Bodélé depression as one of the
most active dust sources. The Bodélé depression is charac-
terized by a year-long activity and a dust emission peak dur-
ing the Northern Hemisphere winter months, with estimated
emissions of (58± 8)× 106 tonnes (estimated for winter-
spring of 2003–2004), equivalent to emissions of more than
7× 105 tonnes per emission day (Koren et al., 2006). The
uniqueness of the Bodélé as a prime dust source was at-
tributed to three factors: A. Mineralogy – being part of the
former lake Mega-Chad, the Bodélé (∼ 133532 km2) is a rich
dust reservoir, including low density diatomite and eroded
diatomite sand (Bristow et al., 2009), composed of SiO2 and
small quantities of Al2O3 and Fe (Chappell et al., 2008). The
importance of the Bod́elé in fertilizing the Amazon Basin
with Fe and P was addressed by Bristow et al. (2010); B.
Meteorology – The Harmattan winds form the Low Level
Jet (Washington and Todd, 2005) and, C. Topography – the
persistent surface winds blowing southwestward are focused
toward the Bod́elé depression by the structure of the valley
between the Tibesti (∼ 2600 m) and Ennedi (∼ 1000 m) mas-
sifs (Koren et al., 2006).

During the winter months, dust emitted from the Bodélé
depression is transported by the Harmattan winds southwest-
ward over the Sahel toward the Gulf of Guinea into the At-
lantic Ocean heading to the coast of South America (Kauf-
man et al., 2005a).

The extensive emitted dust mass, the tropical Atlantic
northwesterly winds regime, and the observed crustal ele-
ments found in dust in the Amazon Basin suggest that North
African dust reaches the Amazon forest. The exact North
African dust sources that actually the dust is originating
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from, however, remains challenging. In contrast to previous
studies who suggested the arrival of North African dust to the
Amazon forest but showed no clear evidence for the exact
source of the dust, the objective of this study is to use ground
based measurements and remote sensing observations in or-
der to show clear connection between dust source in North
Africa and the Amazon basin. Herein, we present a detailed
case study that integrates the data analysis approach to track
Bodélé’s dust to the Amazon region.

2 Methods

The objectives of AMAZE-08 were to understand the sources
and processes that regulate emissions, transformation and de-
position of biogenic aerosol particles in the forest. Exten-
sive ground based measurements were conducted between
7 February and 14 March 2008 during the wet season. The
AMAZE-08 site was 60 km NNW of Manaus and located
within a mostly pristine rainforest (Chen et al., 2009; Martin
et al., 2010).

We analyzed North African dust emissions and transport
along the dust route during this period, using surface and re-
mote sensing measurements. The surface wind speed and
azimuth were estimated by probing the propagation of a dust
front between the morning overpass of the MODerate res-
olution Imaging Spectroradiometer (MODIS) instrument on
board Terra and the afternoon MODIS-Aqua satellites mea-
surements, using the 1 km resolution blue band (440 nm) data
(Koren and Kaufman, 2004). Time of emission in Africa was
estimated by back propagating the dust front to the source,
using the derived wind speed. Dust passage was monitored at
the Ilorin AErosol RObotic NETwork (AERONET, Holben et
al., 1998) station located in Nigeria (8◦19′12 N, 4◦20′24 E),
along the dust pathway.

Dust mass was estimated at two locations, close to the
source and over the ocean:

A. Near dust sources, which are far from any others
aerosol sources, the observed Aerosol Optical Depth (AOD)
was attributed solely to dust. The dust AOD was transformed
to dust mass,Mdu, using the following relation:

Mdu= 2.7Aτdu(g) (1)

whereA is the plume area (in 1 km resolution) andτdu is the
mean dust AOD at the 550 nm band (at 10 km resolution) of
the MODIS instrument (based on the deep blue data (Hsu et
al., 2004)) located on Aqua. The factor 2.7 (±0.4) g m−2 is
a result of regression calculations between the AOD in the
visible (550 nm) and aerosol column concentration, based on
several in-situ measurements in the North Africa region. The
uncertainty in the mass calculations is±30% (for total AOD
between 0.2 and 0.4, see Kaufmann et al., 2005a and the re-
lated references listed therein; Yu et al., 2009). Note that in
cases when total AOD> 0.4, the error may be larger.

B. Over the Atlantic Ocean, it is likely that dust particles
are mixed with marine aerosol (sea salt, organic matter and
oxidation products of dimethyl sulfide (Yu et al., 2009)) and
biomass-burning aerosols from the Sahel region (Andreae et
al., 1994; Formenti et al., 2008; Ansmann et al., 2009). This
mixing increases the fine fraction,f , defined as the aerosol
fraction with diameter smaller than 1 µm (Kaufmann et al.,
2005b). Therefore, over the ocean, the daily dust mass,Mdu,
was estimated from Eq. (1), whereA is the area over the
ocean covered by dust (between 20◦ N–15◦ S, and 50◦ W–
15◦ E). τdu was extracted from the total AOD,τ , and fromf ,
using Eq. (2) (Kaufmann et al., 2005a; Yu et al., 2009):

τdu=
τ(fa−f )−τm(fa−fm)

fa−fd
(2)

τ andf were products of the 550 nm band of the MODIS
instrument (both in 1◦ resolution) located on the Terra and
Aqua satellites. The fine fraction,f , is assumed to be com-
posed of 3 main types of aerosol, as described by Eq. (3)
(Kaufman et al., 2005a)

f = fa+fm+fd (3)

were fa, fm, fd are the anthropogenic, maritime and dust
fine fractions (0.90, 0.45 and 0.37, respectively, with esti-
mated error of 20%) as estimated over selected regions (Yu
et al., 2009). The AOD attributed to maritime aerosol,τma,
was based on Eq. (4) (Smirnov et al., 2003; Kaufmann et al.,
2005a):

τma=0.007W ±0.02 (4)

whereW is the magnitude of the wind speed at 1000 hPa,
obtained from the National Center for Environmental Pre-
diction reanalysis (Kalnay et al., 1996).

The propagation of the dust/biomass-burning plumes was
further analyzed by studying the polarization signal of the
plumes, using the Cloud-Aerosol LIdar with Orthogonal
Polarization (CALIOP) instrument on board the Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) satellite (Thomason et al., 2007). In order to
enhance the backscatter signal, the vertical (up to 8 km) and
the horizontal resolution of the profiles were reduced to 60 m
(2 signal points) and 5 km (15 signal points), respectively. In
contrast to other types of aerosols, dust particles are domi-
nated by no spherical particles, and therefore their Volume
Depolarization Ratio (VDR, i.e., the ratio of the perpendic-
ular to parallel components of the attenuated backscatter at
532 nm, including aerosol and molecular scattering) is ex-
pected to be relatively high, approximately between 0.1 to
0.4 (Murayama et al., 2001; Liu et al., 2008a, b, c).

The distinction between aerosols and clouds was based
on (a) the VDR and (b) the different backscatter patterns
(Ben Ami et al., 2009): we assumed that clouds have strong
backscatter signal, and either sporadic and large vertical di-
mension (cumulus clouds) or continuous horizontal shape
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(stratiform clouds). Aerosol plumes, on the other hand, have
a continuous horizontal and vertical structure with wide hor-
izontal dimension and weaker backscatter signal.

The propagation of the dust over the Atlantic Ocean was
also studied by analyzing the spatial distribution of the AOD
from MODIS along the center of the dust/biomass-burning
plumes (between 10◦ N–5◦ S, and 50◦ W–10◦ E).

At the AMAZE-08 field station (2◦35′22′′ S,
60◦06′55′′ W), aerosol particles having diameters smaller
than 2.0 µm as well as those in the size range from 2.0 to
10 µm were collected from above the rain forest canopy,
using Stacked Filter Units with Nuclepore filters. Elemental
analysis of collected particles was carried out by Particle
Induced X-ray Emission (PIXE) (Artaxo et al., 1987).

The transport of the dust, from the Bodélé depression to-
wards the Amazon Basin, was estimated also by trajecto-
ries of the dust-containing air parcels via the HYbrid Single-
Particle Lagrangian Integrated Trajectory (HYSPLIT) model
(Draxler and Rolph, 2003).

3 Results

The results are presented in four stages, from source to sink,
showing correlations that link each subsequent stage to the
previous one:

1. Analysis of the Bod́elé depression emission pattern.

2. Analysis of aerosol properties over the Ilorin
AERONET station near the Gulf of Guinea.

3. Analysis of the transport of air masses over Africa and
over the Atlantic Ocean.

4. Elemental analysis (by PIXE) of aerosols collected at
the AMAZE-08 field site in Central Amazonia.

5. Forward trajectories of air parcels originated from the
Bodélé depression.

3.1 Analysis of the Bod́elé depression emission pattern

During the period of this study, between February 2008 and
mid March, the Bod́elé depression was the most active dust
source in North Africa (Fig. 1). On February 2008, the activ-
ity in the Bod́elé depression was characterized by two periods
of dust emission between 6–8 and 11–16 February, followed
by an extensive emission between 18–27 February. During
early and mid-March, the Bodélé was significantly less ac-
tive. Additional dust activity with much smaller magnitude
was observed in other nearby sources. On a few occasions,
the activity in the Bod́elé was accompanied by significant
emissions from other sources along the Moroccan coastline
(not shown). These plumes, for the most part, propagated
northwest, away from the South American coastline. Fig-
ure 1 illustrates the dominance of the Bodélé depression, in
comparison to other dust sources.

a.     b. 

     
c. 18 February 2008 

 
d. 19 February 2008 
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from dust source along 

the route  

  

Dust plumes from 
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Fig. 1. (a)The location of the Bod́elé depression (marked with red);
(b) The Bod́elé depression (composed of two main dust sources,
marked in red) on a clear day (5 March 2008);(c–d) daily images
of North Africa as seen by the MODIS instrument on board the
Aqua satellite (collection 005) for 18 and 19 February, for the region
between 37◦ N–5◦ S and 17◦ W–35◦ E. Blue regions marked area
with no satellite coverage. The gaps between two aerosol plumes
are equivalent to emission less periods (usually nighttime). The
images are taken fromhttp://modis-250m.nascom.nasa.gov/.

Frequently, the dust originated from the Bodélé is emitted
from two sources: the main source area, northeast and within
the large ephemeral lake (point 1 in Fig. 1b) and a second
smaller source area∼ 150 km south of the lake which is not
always active (point 2 in Fig. 1b).

The emission pattern analysis is based on five emission
days (16, 20, 24, 25 February and 22 March) that were se-
lected based on MODIS coverage during the study period.

Atmos. Chem. Phys., 10, 7533–7544, 2010 www.atmos-chem-phys.net/10/7533/2010/

http://modis-250m.nascom.nasa.gov/


Y. Ben-Ami et al.: Transport of North African Dust 7537

        
0

1

2

3

4

A
e

ro
s
o

l 
O

p
ti
c
a

l 
D

e
p

th
 

(5
0

0
 n

m
) 

  
  

  
  

  
  

 

2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

A
n

g
s
tr

o
m

 E
x
p

o
n

e
n

t

 

 

 

 
 

1
3
/2

  
1
5
/2

  
1
7
/2

  
1
9
/2

  
2
1
/2

  
2
3
/2

  
2
5
/2

  
2
7
/2

  
2
9
/2

  
Fig. 2a. Level-2 AERONET AOD at 500 nm and Angstrom expo-
nent for 440–870 nm during the period between 12 February and
1 March 2008. Periods of high AOD and low Angstrom exponent
are marked with yellow rectangles.

The emission started during the early morning hours, ap-
proximately between 03:30 to 06:30 (local time), with sur-
face wind speeds between 14.5 to 18 m s−1 and wind azimuth
between 225◦ and 250◦. The emitted plumes, observed by
the Aqua satellite, covered an area between 12× 103 and
100× 103 km2. The average AOD of the plumes varied be-
tween 2 and 3.9 (most likely underestimated), and the emit-
ted mass per emission day (up to about 12:30) varied between
1× 105 and 1× 106 tonne. The emitted mass was equivalent
to an emission flux between 2.7–40 t s−1 (based on different
durations of emission).

The estimated time of emission, surface wind azimuth and
emission flux are in agreement with the analysis of Koren and
Kaufman (2004) and Koren et al. (2006). The estimated sur-
face wind speed is slightly higher than measurements done
by Koren and Kaufman (2004) and Koren et al. (2006); how-
ever, it is in line with the suggested minimum threshold speed
for dust emission of 10–11 m s−1 (Koren and Kaufman 2004;
Todd et al., 2007).

A special case is the dust emission during 18 February,
which was characterized by early emission (starting approxi-
mately at 23:30) and a large emitted mass of∼ 2× 106 tonne
(up to noon local time). The extensive dust emission contin-
ued on 19 February. The emission of the Bodélé then per-
sisted for seven more days until 27 February.

3.2 Analysis of aerosol properties over the Ilorin
AERONET station.

Focusing on two emission periods, 11–16 and 18–27 Febru-
ary, we followed the dust plumes along their routes west-
ward toward the Gulf of Guinea. During 14–16 and
20–22 February, the Ilorin AERONET station (located at

 

Fig. 2b. Back trajectories starting from the Ilorin AERONET sta-
tion (white circle) during 14–16 and 20–22 February, starting at
1000 m (red) and 2000 m (blue) above ground level (starting at
12:00 UTC), calculated via HYSPLIT model. The location of the
Bodélé depression is marked with white star.

8◦19′ N, 4◦20′ E) measured a significantly increased AOD
(most likely underestimated), accompanied by a decrease of
the Angstrom exponent (Å, Eck et al., 1999). Small̊A values
indicate the presence of large particles such as dust. Sig-
nificant emissions, starting on 18 February, are reflected in
the AOD values (Fig. 2a). Back trajectory calculations from
Ilorin station, during 14–16 and 20–22 February, suggest that
the air masses passed over the Bodélé region (Fig. 2b) and
that the transport time was∼ 2.5 days.

3.3 Analysis of the transport of air masses over Africa
and over the Atlantic Ocean

The propagation of the dust plumes over North Africa was
analyzed using CALIOP vertical profiles. Over the Atlantic
Ocean, we used CALIOP and MODIS measurements. Fig-
ures 3a and b show the propagation of the dust/biomass-
burning plumes during the study period, beginning near the
source, continuing over the Atlantic and finally toward the
Amazon Basin. It can be seen that the dust event is com-
posed of two major plumes (as observed by MODIS, Fig. 1c
and d) with top heights near 1.2 and 2 km (for 19 Febru-
ary), both emitted from the Bodélé. As the dust propagated
southwest from the Bod́elé, it mixed with biomass burning
smoke. From the mixing region over Nigeria, the dust and
the biomass smoke continued together, as shown in the VDR
analysis. The comparison between Fig. 3a and b with obser-
vations from a day without a dense aerosol plume (Fig. 4)
clearly emphasizes the presence of the dust and the biomass-
burning aerosols over the marine boundary layer during the
period of the study.
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Fig. 3a. CALIOP nighttime vertical attenuated backscatter profiles
(km−1 s−1) in the 532 nm band, plotted over the study area. The
vertical profiles are 5 km in height (February 2008). The location
of the Bod́elé is marked by a yellow star. The lower enlargement
shows the interaction region between the biomass-burning smoke
and the dust plumes. The dust is recognized by the strong backscat-
tering signal relative to the biomass-burning plume (the data was
verified with MODIS).

3.3.1 Volume depolarization ratio analysis

VDR, retrieved from the vertical profiles of CALIOP, is a
function of CALIPSO wavelength and the size and shape of
the targets particles and air molecules. Therefore, the ac-
quired VDR is in fact a result of different types of interac-
tions.

The histogram of the area covered by the aerosol plumes
showed that most of the values fell between∼ 0.1 to ∼ 0.4
(Fig. 5). These VDR values, which are typical for dust
(Liu et al., 2008a, b, c; Tesche et al., 2009), indicate that
the majority of the observed signal (during the period of
the study) was obtained from dust particles. The obtained
values are also in agreement with results of 0.31± 0.03
(Freudenthaler et al., 2009) attributed solely to dust parti-
cles. The relatively high values, namely more signal at the
perpendicular band of CALIOP, derived from the irregular
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Fig. 3b. As Fig. 3a, but for daytime profiles and for 1064 nm wave-
length.

Fig. 4. A CALIOP nighttime vertical attenuated backscatter profile
(km−1 sr−1) in the 532 nm band from 2 February 2008: An exam-
ple of a CALIOP profile where one see the height of the marine
boundary layer (marked by the height of the marine stratocumulus
clouds) with almost no presence of dense aerosol above it. Aerosols
above the marine boundary layer are marked by an ellipse. The
CALIPSO track and the direction of the flight are shown on the up-
per part (red).
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Fig. 5. Frequency of occurrence of VDR, obtained from the verti-
cal area covered by the aerosol plumes for the area between 40◦ N
and 5◦ S and between 17◦ E and 46◦ W as seen in Fig. 3a (based
on CALIOP nighttime profiles between 19–24 February 2008). The
edges of the plumes are defined based on the VDR and different
backscatter patterns (see Sect. 2). Aerosols located in the ma-
rine boundary layer (for which the height of the marine boundary
layer was defined based on the location of marine stratocumulus
clouds, Ben-Ami et al., 2009) were excluded from the analysis, and
therefore the VDR obtained from sea salt is expected to be minor.
VDR regions dominated by air molecules (M), anthropogenic (A),
biomass-burning (B), dust (D) aerosol and clouds (C) are marked
in red. Note that the small peak of VDR< 0.1 was mostly from
data taken on 19 February (see Fig. 6b). The threshold for pure dust
(0.25) is marked by a green line.

shape of the dust and from multiple scattering. Note that in a
case of high AOD the signal of CALIPSO, obtained from the
lower part of the aerosol plume, may have a lower quality.

Water clouds located near or within the aerosol plume,
have higher VDR values (between 0.4 to 1) due to multi-
ple scattering and were a minor contribution to the overall
sampled signal. Anthropogenic aerosols, such as biomass
smoke and molecules, which are much smaller compared to
the CALIOP wavelength, have low VDR values, between 0
to 0.1 (Liu et al., 2008 a, b, c).

Most of the signal is attributed to dust since most of
the VDR data is within 0.1–0.4. To emphasize the loca-
tion of cleaner dust within the transported aerosol plume,
we showed regions where the VDR is larger than 0.25 (the
threshold is marked on Fig. 5) and smaller than 0.4. This
relatively high value indicates that the selected regions are
dominated by dust. Based on this assumption, several re-
gions of relatively pure dust, as well as regions characterized
by biomass burning mixed with dust (with lower VDR val-
ues) are marked in Fig. 6a. Close to the source (19 Febru-
ary), the aerosol plume is composed of (a) biomass burning
mixed with dust in the southern parts of the aerosol plume
(VDR of 0.19), (b) relatively pure dust in the central part of

the plume (VDR of 0.31) and apparently (c) anthropogenic
aerosol (VDR between 0 to∼ 0.13), most likely transported
from North Libya and/or Europe over the Mediterranean
(Duncan et al., 2008), in the northern part (Fig. 6a). This as-
sumption was supported by back trajectories from HYSPLIT
model, showing that the air parcel from the northern part
of Fig. 6a (for 19 February, between latitudes∼ 22 N◦ and
∼30 N◦) passed over Europe and the Mediterranean, head-
ing central North Africa (not shown).

The tri-modal distribution of these aerosols is also evident
in Fig. 6b. The VDR values of∼ 0.3 are in line with previous
studies, and the VDR value of∼ 0.19 is significantly larger
than that of< 0.1 expected for pure biomass smoke (Liu et
al., 2008a, b, c), indicating that the biomass smoke is mixed
with dust particles.

The mixing of both types of aerosol over the Atlantic
Ocean, as well as sedimentation of large dust particles along
the transport route, is also evident from the shift of the center
of the VDR distribution (Fig. 6b) from 0.32 over Africa to
0.15 over the western Atlantic.

Detailed analysis of the regions that are dominated by
dust (marked with red in Fig. 6a) shows that the VDR de-
creases over time during transport, possibly due to exten-
sive sedimentation of large dust particles. An opposite trend
of increasing VDR (from 0.19 to 0.22) characterized the
regions that are dominated by biomass burning mixed with
dust (marked with green on Fig. 6a), indicating that more
dust is dissipating toward the air mass containing the biomass
burning. Further west (22–24 February), the VDR decreases
again, most likely due to aerosol wet removal and sedimen-
tation.

3.3.2 Analysis with MODIS AOD

As the dust plume continued to move away from its source,
the spectral signal of the dust weakened, and it was more dif-
ficult to observe the dust via MODIS’s spectral bands. How-
ever, the spatial and temporal distribution of MODIS AOD,
calculated as latitudinal daily averages along the center of
the plume, clearly shows a significant increase of AOD, ap-
proximately from 17 February to 1 March (Fig. 7a). The
spatial and temporal distribution of the fine fraction,f , also
calculated as latitudinal daily averages along the center of
the plume, is in good agreement with the spatial and tem-
poral pattern of the AOD (not shown). The suggestion is
that periods of high AOD were characterized by the presence
of a significant coarse fraction, presumably dust. The lon-
gitudinal distribution of the AOD, which extended from the
African coast to the South American coast (50◦ W), suggests
the arrival of North African dust as far as the edge of the
Amazon region. Estimation of dust loading (Fig. 7b), which
is contributed to all north African dust sources, proposed
that the extensive dust emission increased the dust loading
over the ocean (between 20◦ N–15◦ S, and 50◦ W–15◦ E) by
more than 100%. The spatial distribution of the AOD from
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Fig. 6a. Vertical averaged VDR profiles of the aerosol plumes. The
edges of the plumes are defined based on different backscatter pat-
terns (see Sect. 2). Clouds were removed based on their relatively
high VDR and on their spatial distribution. Aerosols located in the
marine boundary layer (the height of the marine boundary layer was
defined based on the location of marine stratocumulus clouds, Ben-
Ami et al., 2009) were excluded from the analysis. Average VDR
(± one standard deviation) for selected regions of pure dust with
VDR between 0.25 and 0.4 are marked in red, and regions of mixed
biomass aerosol with dust (0< VDR < 0.25) are marked in green.
The blue-marked VDR along the aerosol plumes are those that are
not classified by red or green.

17 February to 1 March is composed of minor and major
peaks (marked in Fig. 7a) that are simultaneous with the two
events of dust emissions that occurred during 11–16 and 18–
27 February, including the signature of these emissions in the
Ilorin AERONET measurements (14–16 and 20–22 Febru-
ary). The upper part of Fig. 7a–b (∼ 5–9 February) show
evidence for other period of emission.

3.4 Elemental analysis (by PIXE) of aerosols collected
at the AMAZE-08 field site in Central Amazonia

The arrival of the dust in the Amazon region was observed at
the AMAZE-08 field site between 22 and 26 February. Ele-
mental analysis by PIXE of the aerosol showed an increase
in the elements Si, Al, Fe, Mn and Ti in the coarse and the
fine fraction, all attributed to mineral dust emitted during 18–
19 February (and possibly even earlier, during 11–16 Febru-
ary) from the Bod́elé depression (Fig. 8). The significant in-
crease in the observed crustal elements continued until about
4 March. During this period, the daily averaged concentra-
tion of the previously mentioned crustal elements increased
by approximately one order of magnitude (i.e., from 0.076 to
0.79 µg m−3 and from 0.062 to 0.82 µg m−3 in the fine and
coarse modes, respectively). The total mass of the above
crustal elements during this period (between 22 February
and 4 March) was 4.83 µg m−3. Increases in other elements
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Fig. 6b. Frequency of occurrence of VDR (as in Fig. 5, but for
all days) obtained from CALIOP nighttime profiles. Rare inci-
dences of VDR> 0.5 are not shown. VDR regions dominated by
air molecules (M), anthropogenic (A), biomass-burning (B) and
dust (D) aerosol are marked in red.
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latitudinal average for the rectangle region between 10◦ N–5◦ S and
50◦ W–10◦ E. The data is based on MODIS AOD maps, in spa-
tial resolution of one degree, as obtained from the Aqua and Terra
satellites. The signature of dust emitted during (1) 11–16 February
and (2) 18–27 February is indicated; (b) daily estimated dust mass
(tonne) over the Atlantic Ocean between 20◦ N–15◦ S and 50◦ W–
15◦ E using Eq. (1–4). Uncertainty in the mass estimate is calcu-
lated based on±30% (dashed lines). Note that in cases when total
AOD > 0.4, the error may be larger.

(not shown), such as S (in the coarse fraction), also occurred,
most likely contributed by marine sources, possibly originat-
ing from dimethyl sulfide (DMS) oxidation. Chlorine also in
the coarse fraction indicated that the dusty air plumes passed
over the ocean and mixed with sea salt, as expected. Potas-
sium, in the fine and coarse fraction, may be attributed ei-
ther to arrival of dust or to a contribution of biomass burning
aerosol, possibly originating from the Southern Sahel region.
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Fig. 8. Elemental composition of aerosol collected at the AMAZE-
08 field site in Central Amazonia during February and June 2008,
(a) fine (diameter< 2.0µm) and(b) coarse fraction (2.0 to 10 µm).
The area in the green rectangle marks the dates for which crustal el-
ements were enhanced. The left Y-axis refers to the concentrations
of Al, Si, and Fe. The right Y-axis refers to the concentrations of
Mn and Ti.

The increase in crustal elements during additional periods,
as seen in Fig. 8 (e.g.: during 5–9 April), suggests that this
is not a singular event and that there are additional cases of
North African dust transport to the Amazon Basin. Anal-
ysis of CALIOP profiles along the Brazilian coastline (for
24 February, Fig. 3a) showed that the aerosol plume attained
a maximum height near 3.3 km, while its base merged with
the underlying boundary layer, in agreement with Ansmann
et al. (2009).

3.5 Forward trajectories of air parcels originated from
the Bodélé depression.

Forward trajectories, calculated using the HYSPLIT trans-
port model, starting over the Bodélé depression at the lev-
els of 0, 500, and 1000 m above ground level, propose that
the increase of crustal elements between 22 and 26 Febru-
ary was contributed to dust emitted from the Bodélé (and the
nearby sources) between∼ 14 and∼ 15 February (Fig. 9a).
Similarly, the increase of crustal elements between 26 Febru-
ary and 4 March can be attributes to emission of dust from
∼ 18 February and the following days (and partly to emission
from previous days, Fig. 9b). The results of the model pro-
posed that the dust arrived to the heart of the Amazon Basin
(near 60◦ W) in height between 1700 and 5000 m above
ground level, and the transport time from the Bodélé to the
Amazon Basin is between∼ 10 and∼ 17 days.

a.       b. 

   

 

 

 

Fig. 9. Forward trajectories calculated using the HYSPLIT model,
starting from several locations over the region of the Bodélé depres-
sion from the period between(a) 14 and 15 and(b) for 18 Febru-
ary 2008. The green, red and blue lines mark the height of the
starting point at 0, 500 and 1000 m above ground level. The region
near Manaus is marked by a white circle.

4 Conclusions

Koren et al. (2006) suggested the Bodélé as source of nu-
trients for the Amazon Basin based on inductive reason-
ing without showing evidence for dust deposition. Here we
present a detailed case study that closely follows dust emitted
mainly from the Bod́elé depression in Chad and deposited in
the Amazon Basin. The AMAZE-08 measurements in the
central Amazon show episodes of dust, biomass burning and
marine aerosol elements, in agreement with the expected ar-
rival time of the dust-laden air from the Bodélé, as retrieved
by remote sensing measurements. The arrival of dust in the
Amazon Basin is also in line with simultaneous in-situ mea-
surements from AMAZE-08, showing enhancement in ice
nuclei due to the presence of the dust particles (Prenni et al.,
2009).

Nonetheless, despite the dominance of the Bodélé dust
emissions, it is fair to assume contributions from addi-
tional dust sources along the transport path. We also as-
sume that not all dust episodes (during winter in the North-
ern Hemisphere) reach the Amazon forest. For example,
Lidar observations from one month before our case study
(15 January to 14 February 2008), showed that dust/biomass-
burning plumes that originated from North Africa and were
transported westward, were almost depleted of dust parti-
cles when they reached the Amazon region (Ansmann et al.,
2009).

The Bod́elé emission rates might be underestimated due
to saturation of the AOD inversion algorithm (at∼ AOD = 4)
and the use of an AOD-to-mass conversion constant that is
based on a compilation of many in-situ dust measurements
and therefore should reflect average dust events and under-
estimate strong dust events. Moreover, our data is limited
to the last daily satellite snapshots taken around 13:30 local
time and therefore do not include dust that was emitted dur-
ing the local afternoon (after the pass of the Aqua satellite
over the region). Based on the spatial and temporal distribu-
tion of the VDR and the estimation of dust loading, we show
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that the Bod́elé’s activity is clearly reflected by changes in
aerosol size distribution and dust loading over the tropical
Atlantic.

Following the two emission periods (between 11–
16 February and between 18–27 February) and based on the
relatively week emission between 11–13 February, the travel
time from the source region to the heart of the Amazon Basin
would be approximately between 8 and 12 days. The HYS-
PLIT results partly agree with the above suggestion.

Although further studies are needed, our study suggests
that in addition, events with early emission starting time
(around midnight) are likely to be strong dust events and are
more likely to be transported and to reach the Amazon forest
(during the winter season).
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