libRadtran user course, lecture # 1

Arve Kylling

NILU-Norwegian Institute for Air Research

Arve Kylling libRadtran user course, lecture # 1 1/20



Course outline

@ The radiative transfer equation
@ How to use libRadtran

@ Spectral resolution

@ Liquid water and ice clouds

@ Aerosol

@ Surface properties

@ Monte Carlo

@ 3D radiative transfer

@ Model validation

@ Various applications

Everyday: computer exercises with the aim that you will be able to set
up input files, run uvspec, understand the output and present it.
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The radiance L is a distribution function which describes the radiation
field. It is generally a function of position x, direction €, frequency w
and time t. It is defined by its integral properties. That is, the total
power of radiant energy within the time interval dt, directions d(,
frequencies dw and crossing an area dA is given by

t2 w2
/ / //L(X,Q,w, t) cos ©dAdwat.
1 Ju, JaJa

Here © is the angle between the normal to the surface A and the
direction Q. L typically has units of [W sr—' m=2 Hz~ "] or
[Wsr—" m=2nm~'].

For a thorough discussion of radiance see pages 188-191 of Bohren
and Clothiaux (2006).
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Interaction of electromagnetic radiation with matter

Radiation may be scattered and/or absorbed.

Absorption implies the “death” of a photon. A physical process by which an
ensemble of particles immerged into an electromagnetic radiation field remove energy
from the incident waves to convert this energy in a different form. Both molecules (for
example O3, CO,) and particles (for example black carbon) may absorb radiation.

Scattering is the change in a photon’s direction of propagation. A physical process by
which an ensemble of particles immerged into an electromagnetic radiation field
remove energy from the incident waves to re-irradiate this energy into other directions.
Both molecules (Rayleigh scattering) and particles (aerosols, clouds, Mie scattering)
scatter radiation.

Absorption and scattering processes are described by absorption and scattering cross
sections. These are obtained from measurements (O3 in the UV), theoretical

calculations (Rayleigh scattering, Mie theory, T-matrix, etc.) or a combination of both
(spectral lines of trace gases in the infrared).

Depends on density, type, shape, wavelength, temperature, pressure.
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Single atmospheric layer
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The Bouguer-Lambert law

A pencil of mono-chromatic radiation L(z, §) will be weakened by
dL(z, ) after traversing a medium of thickness dz at an angle 0:

az

cos

dL(z,0) = —*L(z,0)
The extinction coefficient is

B (z,v) Z BX(z,v),  BX(z,v) = ni(2)o¥(v)

where n;(z) is the number density and o (x = abs, sca) the cross
section at wavelength \. For solar radiation the boundary condition at
the top of the atmosphere (toa) is

L(Ztoa; 90) = L05(9 — 90)
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The Bouguer-Lambert law cont'd

One absorbing trace gas (O3) plus Rayleigh scattering (wavelength
dependence omitted)

aL(z,0
OSQ(dZZ’) - _(n03(2)003 + nair(z)JRaY)L(z79) = _BeXtL(z’ 1)

Solution

L(Z, 0) — LO e(_n03 (Z)UO3+nail'(z)URay)Z/ cos 0) — Loe*,@e)dz/ cos 0

For solar radiation this is the direct solar beam in a plane-parallel (flat
Earth) atmosphere.
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The Bouguer-Lambert law cont'd

Level Layer
The Bouguer-Lambert law includes 4
absorption of radiation along the beam 3
direction and scattering out of the beam 3
direction. Vertical variations in n;(z) and o; 2
may be treated by dividing the atmosphere 2 1
into homogeneous layers. 1 0

0

What about scattering into the beam direction?

Or from other wavelengths?
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The 1D radiative transfer equation

The 1D radiative transfer equation reads

NW = _BeXtL(Z, s ¢)
ﬂiﬂ / qu/ au'p(z, p, dip', ¢ )z, 1 &)
+57°B[T(2)]

where the absorption and scattering coefficients are defined as (3% = g% + 35%9)
:Zﬁf((rvy)v ,Bf((r,y):n,(r)af(y)
i

Single scattering albedo:

ﬂsca
I@abs ﬁsca

The phase function depends on the particle(s) that scatter: molecules, water droplets,
ice particles, aerosol.
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Radiation quantities

Solution of the radiative transfer equation generally yields the diffuse radiance
L(r,p, 8)

and the direct radiance

L*" (7, o, o).

For polarization above quantities are vectors. From the radiances the upward, E7(7),
and downward, E*+(7), fluxes, or irradiances [W m~—2 nm~"], are calculated

/0277 d<15/01 pL(r, 1, #)du

2 1
poLoe™ ™" 4 /0 do /0 uL(r, —u, §)dp.

E'(r)

EX(7)
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Spectral resolution

The handling of the spectral resolution depends on the application,
computing resources and needed accuracy. Various methods exists:
@ Representative wavelengths (Gasteiger et al., 2014).
@ Band models, for example LOWTRAN (Ricchiazzi et al., 1998).
@ Spectral calculation.

@ Correlated-k distribution (Fu and Liou, 1992, 1993; Kato et al.,
1999).

@ Line-by-line. Get absorption coefficient from for example ARTS
(Eriksson et al., 2011) and HITRAN line database.
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Spectral resolution, example
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(Left) TOA oxygen-A band around 760 nm. (Right) Thermal window region.
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Spectral resolution, example cont'd
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Atmospheric

description

-Trace gas profiles

-Temperature profile

- Pressure profile

- Aerosol

- Water clouds

- Ice clouds

- Surface properties
(albedo or BRDF)

- Wind speed

libRadtran/uvspec structure

Absorption
cross sections,
parameterizatios,
aerosol and
cloud physics,

Radiation quantities

uncalibrated radiance/Stokes vector,

irradiance, actinic flux

Post-
processing

Optical properties

Profiles of:

- extinction coefficient

- single scattering
albedo

- scattering phase
function/matrix or
Legendre polynomials|

- reflectance function/
matrix

Model output

- calibrated radiance/Stokes vector, irradiance, actinic flux

- integrated solar or thermal irradiance

- brightness temperature

- simulated measurements of satellite or ground based radiometers
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uvspec: the input file

The uvspec model may be run from the command line:
uvspec < input_file > output_file
A very simple input file:

# Location of atmospheric profile file.

atmosphere_file /xnilu_wrk/libRadtran-2.0/data/atmmod/afglus.dat

# Location of the extraterrestrial spectrum

source solar /xnilu_wrk/libRadtran-2.0/data/solar_flux/kurudz_1.0nm.dat
wavelength 310.0 320.0 # Wavelength range [nm]

quiet
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uvspec: the output file

Depends on input file. And may partly be user defined

310.
311.

313.
314.
315.
316.
317.
318.

320.

000
000

000
000
000
000
000
000

000

S S R N )

zout toa
umu 1
output_user lambda uu

310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.

000
000
000
000
000
000
000
000
000
000
000
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.865809e+01
.664620e+02
.346365e+02
.696249e+02
.750031e+02
.000255e+02
.547758e+02
.257973e+02
.183537e+02
.352297e+02
.440166e+02

BB R D W NN NN

e I e RN

.300836086e+01
.493654060e+01
.127657890e+01
.837722015e+01
.934275436e+01
.566148376e+01
.744809532e+01
.132376862e+01
.005080032e+01
.592098236e+01
.345986938e+01

.500562e+01
.207345e+02
.737222e+01
.221342e+02
.242594e+02

415845e+02

.080702e+02
.563012e+02
.490773e+02
.607911e+02
.611335e+02

-7.
.246831e-15
-2.
-4.
.984720e-14
.455744e-14
-2.
.855635e-14
.896327e-14
.025472e-14
.286309e-15

-1

-4

-4

876117e-15

65336le-14
333132e-15

639397e-16

e e SR S S |

.055187e+00
.324662e+01
.071403e+01
.349832e+01
.392630e+01
.591753e+01
.231667e+01
.796838e+01
.737604e+01
.871899%e+01
.941823e+01
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.008240e+01
.877553e+01
.518295e+01
.909927e+01
.948064e+01
.226022e+01
.702450e+01
.468342e+01
.360136e+01
.551733e+01
.561580e+01

.006912e-16
.609508e-16
.355789%e-15
.688812e-15
.282639%e-16
.221771e-15
.187181e-15
.048386e-15
.453992e-15
.865827e-15
.844182e-16
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Tips/suggestions

@ To generate first input file:

o Try GUI

@ Look in examples directory for *INP files
@ Overview of options:

e Use GUI
o Consult libRadtran User’s guide for details. Use index at end.
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Today’s exercises:

@ Calculate solar and thermal spectra for cloudless sky at top and
bottom of the atmosphere

@ Try different spectral resolutions (units?)
@ Use different RTE solvers to see differences
@ Plot results

Hints:

@ example input files: UVSPEC_LOWTRAN_SOLAR. INP and
UVSPEC_LOWTRAN_THERMAL. INP

) options mol_abs_param, rte_solver, zout, output_user
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